Article ID Journal Published Year Pages File Type
4497371 Journal of Theoretical Biology 2010 4 Pages PDF
Abstract

One major problem with the existing algorithm for the prediction of protein structural classes is low accuracies for proteins from α/β and α+β classes. In this study, three novel features were rationally designed to model the differences between proteins from these two classes. In combination with other rational designed features, an 11-dimensional vector prediction method was proposed. By means of this method, the overall prediction accuracy based on 25PDB dataset was 1.5% higher than the previous best-performing method, MODAS. Furthermore, the prediction accuracy for proteins from α+β class based on 25PDB dataset was 5% higher than the previous best-performing method, SCPRED. The prediction accuracies obtained with the D675 and FC699 datasets were also improved.

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, ,