Article ID Journal Published Year Pages File Type
4497907 Journal of Theoretical Biology 2009 10 Pages PDF
Abstract
We analyze here the evolutionary consequences of selection with delay in a population genetics context. In the classical works on evolutionary dynamics, an individual produces off-springs in direct proportion to its fitness, a process in which mutations may occur. In the present scenario of delayed selection, individuals that acquire deleterious mutations can still reproduce unharmed for several generations. During this time delay, the damage passed on to off-springs can potentially be repaired by subsequent compensatory mutations. In the absence of such a repair, the individual becomes sterile. Here we study the population-genetic effects of such a time delay by means of both numerical simulations and theoretical modeling. The results show that delayed selection lowers the extinction threshold, endangering the survival of the population. Surprisingly, however, no traces of this delay effect are encountered in the sequence diversity of the population. These conclusions suggest that delayed selection is hard to detect in genetic data and thus could be a wide-spread but rarely detected phenomenon.
Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, ,