Article ID Journal Published Year Pages File Type
4498275 Journal of Theoretical Biology 2008 6 Pages PDF
Abstract
The DNA strands in most prokaryotic genomes experience strand-biased spontaneous mutation, especially C→T mutations produced by deamination that occur preferentially in the leading strand. This has often been invoked to account for the asymmetry in nucleotide composition, typically measured by GC skew, between the leading and the lagging strand. Casting such strand asymmetry in the framework of a nucleotide substitution model is important for understanding genomic evolution and phylogenetic reconstruction. We present a substitution model showing that the increased C→T mutation will lead to positive GC skew in one strand but negative GC skew in the other, with greater C→T mutation pressure associated with greater differences in GC skew between the leading and the lagging strand. However, the model based on mutation bias alone does not predict any positive correlation in GC skew between the leading and lagging strands. We computed GC skew for coding sequences collinear with the leading and lagging strands across 339 prokaryotic genomes and found a strong and positive correlation in GC skew between the two strands. We show that the observed positive correlation can be satisfactorily explained by an improved substitution model with one additional parameter incorporating a general trend of C avoidance.
Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, ,