Article ID Journal Published Year Pages File Type
4498324 Journal of Theoretical Biology 2008 14 Pages PDF
Abstract

Fluorescence recovery after photobleaching (FRAP) measurements offer an important tool towards analysing diffusion processes within living biological cells. A model is presented that aims to provide a rigorous theoretical framework from which binding information of proteins from FRAP data can be extracted. A single binding reaction is considered and a set of mathematical equations is introduced that incorporates the concentration of free proteins, vacant binding sites and bound complexes in addition to the on- and off-rates of the proteins. To allow a realistic FRAP model, characteristics of the instruments used to perform FRAP measurements are included in the equation. The proposed model has been designed to be applied to biological samples with a confocal scanning laser microscope (CSLM) equipped with the feature to bleach regions characterised by a radially Gaussian distributed profile. Binding information emerges from FRAP simulations considering the diffusion coefficient, radial extent of the bleached volume and bleach constant as parameters derived from experimental data. The proposed model leads to FRAP curves that depend on the on- and off-rates. Analytical expressions are used to define the boundaries of on- and off-rate parameter space in simplified cases when molecules can move on an infinite domain. A similar approach is ensued when movement is restricted in a compartment with a finite size. The theoretical model can be used in conjunction to experimental data acquired by CSLM to investigate the biophysical properties of proteins in living cells.

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, ,