Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4498675 | Journal of Theoretical Biology | 2008 | 6 Pages |
Abstract
Numerous growth functions exist to describe the ontogeny of animals. Such functions (e.g., von Bertalanffy's equation, thermal-unit growth coefficient) are currently applied to ectotherms even though they fail to provide analytical expressions that adapt to a wide range of fluctuating temperatures. The underlying mechanisms responsible for the ontogeny of ectotherms exhibiting indeterminate growth have not yet been summarised in terms of a simple but meaningful mathematical equation. Here, a growth function is developed, with parameters having physical or biological interpretation that accommodates indeterminate growth under fluctuating temperatures assuming the latter vary seasonally. The equation is derived as a special case of von Bertalanffy's equation providing realistic growth trajectories throughout the ontogeny of several groups of ectotherms (R2>0.90). The results suggest that the effect of temperature on growth trajectory supersedes that of reproduction in an environment with fluctuating temperature. Furthermore, values of the allometric weight exponent (0
Related Topics
Life Sciences
Agricultural and Biological Sciences
Agricultural and Biological Sciences (General)
Authors
André Dumas, James France,