Article ID Journal Published Year Pages File Type
4498699 Journal of Theoretical Biology 2008 10 Pages PDF
Abstract

A method of obtaining rate equations from conductance-based equations is developed and applied to fast-spiking and bursting neocortical neurons. It involves splitting systems of conductance-based equations into fast and slow subsystems, and averaging the effects of fast terms that drive the slowly varying quantities by showing that their average is closely proportional to the firing rate. The dependence of the firing rate on the injected current is then approximated in the analysis. The resulting behavior of the slow variables is then substituted back into the fast equations, with the further approximation of replacing the fast voltages in these terms by effective values. For bursting neurons the method yields two coupled limit-cycle oscillators: a self-exciting oscillator for the slow variables that commences limit-cycle oscillations at a critical current and modulates a fast spike-generating oscillator, thereby leading to slowly modulated bursts with a group of spikes in each burst. The dynamics of these coupled oscillators are then verified against those of the conductance-based equations. Finally, it is shown how to place the results in a form suitable for use in mean-field equations for neural population dynamics.

Keywords
Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , ,