Article ID Journal Published Year Pages File Type
4498836 Journal of Theoretical Biology 2008 13 Pages PDF
Abstract

The genetic basis of complex diseases is expected to be highly heterogeneous, with complex interactions among multiple disease loci and environment factors. Due to the multi-dimensional property of interactions among large number of genetic loci, efficient statistical approach has not been well developed to handle the high-order epistatic complexity. In this article, we introduce a new approach for testing genetic epistasis in multiple loci using an entropy-based statistic for a case-only design. The entropy-based statistic asymptotically follows a χ2χ2 distribution. Computer simulations show that the entropy-based approach has better control of type I error and higher power compared to the standard χ2χ2 test. Motivated by a schizophrenia data set, we propose a method for measuring and testing the relative entropy of a clinical phenotype, through which one can test the contribution or interaction of multiple disease loci to a clinical phenotype. A sequential forward selection procedure is proposed to construct a genetic interaction network which is illustrated through a tree-based diagram. The network information clearly shows the relative importance of a set of genetic loci on a clinical phenotype. To show the utility of the new entropy-based approach, it is applied to analyze two real data sets, a schizophrenia data set and a published malaria data set. Our approach provides a fast and testable framework for genetic epistasis study in a case-only design.

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , , , , ,