Article ID Journal Published Year Pages File Type
4499022 Journal of Theoretical Biology 2007 10 Pages PDF
Abstract

Biofilms are well known for their extreme tolerance to antibiotics. Recent experimental evidence has indicated the existence of a small fraction of specialized persister cells may be responsible for this tolerance. Although persister cells seem to exist in planktonic bacterial populations, within a biofilm the additional protection offered by the polymeric matrix allows persister cells to evade elimination and serve as a source for re-population.Whether persister cells develop through interactions with toxin/antitoxin modules or are senescent bacteria is an open question. In this investigation we contrast results of the analysis of a mathematical model of the toxin/antitoxin hypothesis for bacteria in a chemostat with results incorporating the senescence hypothesis. We find that the persister fraction of the population as a function of washout rate provides a viable distinction between the two hypotheses.We also give simulation results that indicate that a strategy of alternating dose/withdrawal disinfection can be effective in clearing the entire persister and susceptible populations of bacteria. This strategy was considered previously in analysis of a generic model of persister formation. We find that extending the model of persister formation to include the toxin/antitoxin interactions in a chemostat does not alter the qualitative results that success of the dosing strategy depends on the withdrawal time.While this treatment is restricted to planktonic bacterial populations, it serves as a framework for including persister cells in a spatially dependent biofilm model.

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
,