Article ID Journal Published Year Pages File Type
4499138 Journal of Theoretical Biology 2007 12 Pages PDF
Abstract

We describe here a mathematical model of the adaptive dynamics of a transport network of the true slime mold Physarum polycephalum, an amoeboid organism that exhibits path-finding behavior in a maze. This organism possesses a network of tubular elements, by means of which nutrients and signals circulate through the plasmodium. When the organism is put in a maze, the network changes its shape to connect two exits by the shortest path. This process of path-finding is attributed to an underlying physiological mechanism: a tube thickens as the flux through it increases. The experimental evidence for this is, however, only qualitative. We constructed a mathematical model of the general form of the tube dynamics. Our model contains a key parameter corresponding to the extent of the feedback regulation between the thickness of a tube and the flux through it. We demonstrate the dependence of the behavior of the model on this parameter.

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , ,