Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4499515 | Journal of Theoretical Biology | 2006 | 10 Pages |
In this article, we present a mathematical model coupled to an experimental study of ant foraging trails. Our laboratory experiments on Tetramorium caespitum do not find a strong relationship between ant densities and velocities, a common assumption in traffic modeling. Rather, we find that higher order effects play a major role in observed behavior, and our model reflects this by including inertial terms in the evolution equation. A linearization of the resulting system yields left- and right-moving waves, in agreement with laboratory measurements. The linearized system depends upon Froude numbers reflecting a ratio of the energy stored in the foraging trail to the kinetic energy of the ants. The model predicts and the measurements support the existence of two distinct phase velocities.