Article ID Journal Published Year Pages File Type
4500146 Mathematical Biosciences 2013 13 Pages PDF
Abstract

•We study a system describing competing populations with asymmetric nonlocal coupling.•We perform a linear stability analysis and compare with computations.•We describe propagating solutions in the nonlinear regime.•We examine solutions exhibiting colony formation.

We consider a model of two competing species with asymmetric nonlocal coupling in a competition for resources. The nonlocal coupling is via convolution integrals and the asymmetry is via convolution kernel functions which are not even functions of their arguments. The nonlocality is due to species mobility, so that at any fixed point in space the competition for resources depends not just on the populations at that point but on a suitably weighted average of the populations. We introduce two parameters, δ  , describing the extent of the coupling, with δ=0δ=0 corresponding to local coupling, and α  , describing the extent of the asymmetry, with α=0α=0 corresponding to symmetric nonlocal interactions. We consider the case where the model admits a stable coexistence equilibrium solution. We perform a linear stability analysis and show that this solution can be destabilized by sufficient nonlocality, i.e., when δ increases beyond a critical value. We consider two specific kernel functions, (i) an asymmetric Gaussian and (ii) an asymmetric stepfunction. We compute the stability boundary as a function of α, and for δ beyond the stability boundary we determine unstable wavenumber bands. We compute nonlinear patterns for δ significantly beyond the stability boundary. Patterns consist of arrays of islands, regions of nonzero population, separated by either near-deadzones where the populations are small, but nonzero, or by deadzones where populations are exponentially small and essentially extinct. We find solutions consisting of propagating traveling waves of islands, solutions exhibiting colony formation, where a colony is formed just ahead of an island and eventually grows as the parent island decays, and modulated traveling waves, where competition between the two species allows propagation and inhibits colony formation. We explain colony formation and the modulated traveling waves as due to a positive feedback mechanism associated with small variations in the amplitude of the parent island.

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , , ,