Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4500750 | Mathematical Biosciences | 2008 | 7 Pages |
Mass-action epidemic models are the foundation of the majority of studies of disease dynamics in human and animal populations. Here, a kinetic model of mobile susceptible and infective individuals in a two-dimensional domain is introduced, and an examination of the contact process results in a mass-action-like term for the generation of new infectives. The conditions under which density dependent and frequency dependent transmission terms emerge are clarified. Moreover, this model suggests that epidemics in large mobile spatially distributed populations can be well described by homogeneously mixing mass-action models. The analysis generates an analytic formula for the contact rate (β) and the basic reproductive ratio (R0) of an infectious pathogen, which contains a mixture of demographic and epidemiological parameters. The analytic results are compared with a simulation and are shown to give good agreement. The simulation permits the exploration of more realistic movement strategies and their consequent effect on epidemic dynamics.