Article ID Journal Published Year Pages File Type
4500912 Mathematical Biosciences 2007 12 Pages PDF
Abstract

For continuous-time population models with a periodic factor which is sinusoidal, both the growth rate and the basic reproduction number are shown to be the largest roots of simple equations involving continued fractions. As an example, we reconsider an SEIS model with a fixed latent period, an exponentially distributed infectious period and a sinusoidal contact rate studied in Williams and Dye [B.G. Williams, C. Dye, Infectious disease persistence when transmission varies seasonally, Math. Biosci. 145 (1997) 77]. We show that apart from a few exceptional parameter values, the epidemic threshold depends not only on the mean contact rate, but also on the amplitude of fluctuations.

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, ,