Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4501052 | Mathematical Biosciences | 2007 | 17 Pages |
Abstract
Closure operations are a useful device in both the theory and practice of tree reconstruction in biology and other areas of classification. These operations take a collection of trees (rooted or unrooted) that classify overlapping sets of objects at their leaves, and infer further tree-like relationships. In this paper we investigate closure operations on phylogenetic trees; both rooted and unrooted; as well as on X-splits, and in a general abstract setting. We derive a number of new results, particularly concerning the completeness (and incompleteness) and complexity of various types of closure rules.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Agricultural and Biological Sciences (General)
Authors
Stefan Grünewald, Mike Steel, M. Shel Swenson,