Article ID Journal Published Year Pages File Type
4502111 Rice Science 2009 6 Pages PDF
Abstract

Previous study showed that a linkage drag between a blast resistance gene Pi25(t) and QTLs conditioning spikelet fertility (qSF-6) and number of filled grains per panicle (qNFGP-6) was detected on the short arm of chromosome 6. A larger population was used for further verification, and the results confirmed the linkage drag between the blast resistance gene and QTL conditioning spikelet fertility, other than QTL conditioning number of filled grains per panicle. Breakdown or avoidance of the linkage drag could be achieved by selection against the genotype background of a heading-date gene (qHD-7) that resided in the region between RM2 and RM214 on chromosome 7. For further validation, two lines with almost identical genotypes on all chromosomal regions except the Pi25(t) region on chromosome 6 were chosen to develop a new population. The results showed that qSF-6 could be further subdivided into qSF-6-1 and qSF-6-2. When the genotype of the region between RM2 and RM214 was from rice variety Zhong 156, the linkage drag between Pi25(t) and qSF-6-2 was detected and the allele of qSF-6-2 from rice variety Gumei 2 reduced the spikelet fertility. When the genotype of the region between RM2 and RM214 was from Gumei 2, no linkage drag was detected. This indicates that the linkage drag between the blast resistance gene and the QTL conditioning spikelet fertility could be broken down or avoided under a certain background genotype selection against heading-date and provides a marker aided solution for high level of blast resistance and yield breeding in rice and other crops as well.

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)