Article ID Journal Published Year Pages File Type
4502731 Theoretical Population Biology 2008 16 Pages PDF
Abstract

We formulate and analyze an archetypal consumer–resource model in terms of ordinary differential equations that consistently translates individual life history processes, in particular food-dependent growth in body size and stage-specific differences between juveniles and adults in resource use and mortality, to the population level. This stage-structured model is derived as an approximation to a physiologically structured population model, which accounts for a complete size-distribution of the consumer population and which is based on assumptions about the energy budget and size-dependent life history of individual consumers. The approximation ensures that under equilibrium conditions predictions of both models are completely identical. In addition we find that under non-equilibrium conditions the stage-structured model gives rise to dynamics that closely approximate the dynamics exhibited by the size-structured model, as long as adult consumers are superior foragers than juveniles with a higher mass-specific ingestion rate. When the mass-specific intake rate of juvenile consumers is higher, the size-structured model exhibits single-generation cycles, in which a single cohort of consumers dominates population dynamics throughout its life time and the population composition varies over time between a dominance by juveniles and adults, respectively. The stage-structured model does not capture these dynamics because it incorporates a distributed time delay between the birth and maturation of an individual organism in contrast to the size-structured model, in which maturation is a discrete event in individual life history. We investigate model dynamics with both semi-chemostat and logistic resource growth.

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , , , , ,