Article ID Journal Published Year Pages File Type
4502987 Theoretical Population Biology 2007 14 Pages PDF
Abstract

We develop a suite of models with varying complexity to predict elk movement behavior during the winter on the Northern Range of Yellowstone National Park (YNP). The models range from a simple representation of optimal patch choice to a dynamic game, and we show how the underlying theory in each is related by the presence or absence of state- and frequency-dependence. We compare predictions from each of the models for three variables that are of basic and applied interest: elk survival, aggregation, and use of habitat outside YNP. Our results suggest that despite low overall forage depletion in the winter, frequency-dependence is crucial to the predictions for elk movement and distribution. Furthermore, frequency-dependence interacts with mass-dependence in the predicted outcome of elk decision-making. We use these results to show how models that treat single movement decisions in isolation from the seasonal sequence of decisions are insufficient to capture landscape scale behavior.

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , , , ,