Article ID Journal Published Year Pages File Type
4504535 Biological Control 2009 9 Pages PDF
Abstract

When dried organisms are immersed in water, rapid imbibition may cause severe damage to plasma membranes; in unicellular organisms, such damage is usually lethal. This study investigated effects of water activity (dryness) of organisms and immersion temperature on imbibitional damage in three insect pathogenic fungi. Conidial powders of Beauveria bassiana (Bb), Metarhizium anisopliae (Ma) and Metarhizium acridum (Mac) were dried/hydrated to a broad range of water activities (aw) (0.023–0.961) prior to immersion in water at 0.5–33 °C. Imbibitional damage in conidia of each fungus occurred rapidly, with no differences in viabilities observed following immersion for 2 vs. 60 min. Damage increased with decreasing water activity of the conidia and decreasing temperature of the immersion water. Dry (aw ⩽ 0.333) Metarhizium spp. conidia were highly susceptible to imbibitional damage, with viability declining to ⩽5% after immersion at 0.5 °C and ⩽63% following immersion at 15 °C. Germination of the driest Ma conidia was reduced to 66% after treatment at 25 °C. In contrast, Bb was highly tolerant to damage, with significant reductions in viability (to levels as low as 43–65%) occurring only when dry conidia were immersed at 0.5 °C. Damage was prevented when conidia were slowly rehydrated by humidification prior to immersion and immersion temperature was increased to 33–34 °C; germination of all fungi was ⩾94% under these optimal conditions. However, immersion of the driest Bb, Ma, and Mac powders in warm water (33 °C) also resulted in high viabilities (95%, 89%, and 94%, respectively), and slow-rehydrated conidia also retained high viability (87%, 92%, and 83%, respectively) after immersion in ice-cold water (0.5 °C). Formulation of conidia in pure (non-emulsifiable) paraffinic oil provided considerable protection from imbibitional damage. This study underscores a need for establishing standard protocols for preparing aqueous suspensions of sensitive fungi for both research and commercial applications.

Related Topics
Life Sciences Agricultural and Biological Sciences Agronomy and Crop Science
Authors
, , ,