Article ID Journal Published Year Pages File Type
4509339 European Journal of Agronomy 2011 9 Pages PDF
Abstract

No-tillage and direct seeding (NTDS) is an effective crop production method for reducing production costs and soil conservation. In order to understand performance of super hybrid rice under NTDS in rice–oilseed rape cropping system, a researcher-managed trail (2004–2010) and an on-farm research (2002–2005) were conducted to compare different tillage (conventional tillage or no-tillage) and rice establishment methods (transplanting or direct seeding) in super hybrid rice–oilseed rape cropping system. Under researcher-managed condition, grain yields of super hybrid rice under NTDS and conventional tillage and transplanting (CTTP) were equal. Compared with under CTTP, super hybrid rice under NTDS was characterized by more panicle number per m2 but less spikelet number per panicle, and lower aboveground biomass production before heading but higher aboveground biomass accumulated during heading to maturity. Higher maximum tiller number per m2 and lower spikelet production efficiency were responsible for the more panicle number per m2 and less spikelet number per panicle under NTDS, respectively. Under farmer-managed condition, super hybrid rice under NTDS had more panicle number m2 than under CTTP, which resulted in higher grain yield. Labor input under NTDS was lower than that under CTTP. Moreover, adoption of NTDS for super hybrid rice production had no significant impacts on seed yield and yield components of oilseed rape in rice–oilseed rape cropping system. Our study showed that CTTP could be replaced with NTDS to maintain yield and save labor for super hybrid rice production in rice–oilseed rape cropping system.

► We compare different tillage and rice establishment methods in rice–rapeseed rotation. ► No-tillage and direct seeding has equal or higher yield than traditional method. ► No-tillage and direct seeding requires less labor input than traditional method. ► No-tillage and direct seeding for rice production has no impact on yield of rapeseed.

Related Topics
Life Sciences Agricultural and Biological Sciences Agronomy and Crop Science
Authors
, , , , , , , ,