Article ID Journal Published Year Pages File Type
4511378 Field Crops Research 2008 6 Pages PDF
Abstract

Low phytic acid (LPA) crops have recently been considered as a potential way to combat nutritional and environmental issues related to seed phytic acid phosphorus (PA-P). Although, a number of LPA mutant lines have been developed in various crops, they are often featured with lower grain yield and seed viability compared with wild type (WT) parents. We recently developed several LPA mutant lines in rice with PA-P reductions varying from 33.8% to 63.6%. In this study, the performance of grain yield and seed viability of these mutants were investigated. Four of the five mutant lines had 12.5–25.6% reductions in grain yield compared to the corresponding WT parental lines. The reduction in grain weight, varying from 5.4% to 10.7%, was found to be the main causative factor of yield reduction. Similarly, LPA mutants had inferior seed viability to their corresponding WT parent varieties; all mutant lines had a significantly lower simplified vigour index (seed germination rate × seedling dry weight) than their parents, with reductions of 7.8–26.3%, although some mutant lines had similar germination rates as their WT parents. The two mutant lines, which had similar germination rates as their WT parent, however, had significantly lower field emergence rates. More pronounced differences of simplified vigour index were observed after artificial aging treatments between four LPA lines from their WT parents, implying that LPA rice seeds were more susceptible to storage than WT. The yield and yield-related traits of F2 plants and F3 lines from three crosses were evaluated; the results showed that while LPA was associated with significantly lower grain yield and grain weight than WT sibs, there were also LPA plants and lines that out-performed WT controls. These results implied that the negative effect of LPA mutations on grain yield might be reduced or minimized through cross and selection breeding. The implications of these findings were discussed with regard to LPA rice breeding and potential commercial production.

Related Topics
Life Sciences Agricultural and Biological Sciences Agronomy and Crop Science
Authors
, , , , , ,