Article ID Journal Published Year Pages File Type
4512079 Industrial Crops and Products 2016 12 Pages PDF
Abstract

•Biodegradable plasticized PLA–PHB electrospun bionanocomposite mats were developed.•CNC increased the crystallinity, the thermal and mechanical properties of PLA–PHB–ATBC mats.•ATBC increased the stretchability and speed up the disintegration in compost conditions.•PLA-PHB-ATBC-CNC1 mat showed optimal performance for flexible films.

Electrospun biobased and biodegradable nanocomposites for sustainable flexible films were developed. Poly(lactic acid) (PLA) was blended with 25 wt% of poly(hydroxybutyrate) (PHB) to produce bead-less fibers and plasticized with 15 wt% of acetyl(tributyl citrate) (ATBC) to obtain flexible materials. The system was further loaded with cellulose nanocrystals (CNC) in 1 wt% and 5 wt% to obtain bionanocomposites with improved thermal and mechanical resistance. The morphological, structural, thermal and mechanical performance of electrospun bionanocomposites was investigated. The effect of ATBC was characterized by a decrease of the glass transition temperature and an increase in the elongation at break. Meanwhile, CNC improved the thermal and mechanical resistance of mats. Thus, good performance for the intended use was achieved for the bionanocomposite loaded with 1 wt% of CNC (PLA–PHB–ATBC–CNC1), which also showed appropriate surface water resistance. All electrospun bionanocomposites were fully disintegrated under composting conditions showing their possible applications as compostable flexible film materials.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Life Sciences Agricultural and Biological Sciences Agronomy and Crop Science
Authors
, , , , ,