Article ID Journal Published Year Pages File Type
4515879 Journal of Cereal Science 2013 9 Pages PDF
Abstract

•Greater sectional expansion and lower hardness by adding tested flours (e.g. quinoa).•Water content of mass and screw speed had the greatest effect on sectional expansion and hardness.•Remarkable stability of lipids in whole extrudates exposed to high RH.

Amaranth (Amaranthus caudatus), quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule) are pseudocereals regarded as good gluten-free sources of protein and fiber. A co-rotating twin screw extruder was used to obtain corn-based extrudates containing amaranth/quinoa/kañiwa (20% of solids). Box–Behnken experimental design with three independent variables was used: water content of mass (WCM, 15–19%), screw speed (SS, 200–500 rpm) and temperature of the die (TEM, 150–170 °C). Milled and whole samples were stored in open headspace vials at 11 and 76% relative humidity (RH) for a week before being sealed and stored for 9 weeks in the dark. Hexanal content was determined by using headspace gas chromatography. Extrudates containing amaranth presented the highest sectional expansion index (SEI) (p < 0.01) while pure corn extrudates (control) presented the lowest SEI and greatest hardness (p < 0.01). SEI increased with increasing SS and decreasing WCM. In storage, whole extrudates exposed to 76% RH presented the lowest formation of hexanal. This study proved that it was possible to increase SEI by adding amaranth, quinoa and kañiwa to pure corn flour. The evaluation of lipid oxidation suggested a remarkable stability of whole extrudates after exposure to high RH.

Related Topics
Life Sciences Agricultural and Biological Sciences Agronomy and Crop Science
Authors
, , , , , , ,