Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4516090 | Journal of Cereal Science | 2012 | 7 Pages |
The objective of this study was to characterize the effect of hybrid and environment on physical and chemical characteristics of popcorn kernels that have shown importance in predicting end-use quality. Three popcorn hybrids grown in three different environments were tested for physiochemical attributes and popping performance. Hybrid had a significant effect on kernel sphericity, time-to-grind, dietary fiber, sugars, and starch. Environment effect alone affected total mineral content. Hybrid and environment main effects influenced test weight, tangential abrasive dehulling device index, thousand-kernel weight, total carbohydrates, and kernel protein content. Oil adherence to the bag averaged 15.8% and was proportional to oil amount added prior to microwave popping. Unpopped kernels averaged 11.4 ± 5.3%. Most unpopped kernels were observed to successfully pop when heated a second time in microwave tests. Expansion volume was 44.7 ± 3.7 and 47.3 ± 6.4 cm3/g, depending on the method of determination. Expansion volume was correlated (p < 0.05) with several kernel physiochemical parameters that were influenced by hybrid effect. Sphericity, thousand-weight, and total fat are physiochemical characteristics that appear to be good predictors (p < 0.05) of expansion volume.
► Popcorn hybrid and environment affect composition and end-use quality. ► Hybrid showed the highest order main effect for sphericity, time-to-grind, and starch. ► Environment was the highest effect for total minerals. ► Sphericity, thousand-weight, and total fat were good predictors of expansion volume.