Article ID Journal Published Year Pages File Type
4516606 Journal of Cereal Science 2009 5 Pages PDF
Abstract

Understanding the effects of different alleles at the puroindoline b (Pinb) locus on processing quality will provide crucial information for quality improvement. Seven near-isogenic lines (NILs) planted at two locations in the 2008 cropping season were used to determine the effect of puroindoline b alleles on milling performance and Chinese raw white noodle (CRWN) quality. The Pina-D1b/Pinb-D1a genotype possessed significantly higher values in grain hardness, protein content and starch damage than other genotypes, whereas the Pina-D1a/Pinb-D1d genotype had the lowest grain hardness and starch damage, with higher break flour yield, and less reduction flour yield, higher flour colour L*, and lower flour colour b*, than other genotypes. Farinograph parameters, except for water absorption, were not significantly affected by variation of puroindoline b alleles. Pina-D1a/Pinb-D1e had the highest peak viscosity, whereas the lowest value was observed in a Pina-D1b/Pinb-D1a genotype. For CRWN quality, higher noodle viscoelasticity was obtained in the genotype Pina-D1a/Pinb-D1e and Pina-D1a/Pinb-D1g, whereas Pina-D1a/Pinb-D1d had a lower smoothness score. Genotypes with Pina-D1a/Pinb-D1e and Pina-D1a/Pinb-D1g produced the best total noodle score. It was concluded that genotype Pina-D1a/Pinb-D1d had better milling qualities, whereas Pina-D1a/Pinb-D1e and Pina-D1a/Pinb-D1g had slightly superior CRWN qualities in comparison with other genotypes.

Related Topics
Life Sciences Agricultural and Biological Sciences Agronomy and Crop Science
Authors
, , , , ,