Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4521092 | South African Journal of Botany | 2012 | 6 Pages |
Three new acylated anthocyanidin 3-rutinoside-5-glucosides were isolated from the violet-blue flowers of Saintpaulia ‘Thamires’ (Saintpaulia sp.) along with a known flavone glycoside. Three new acetylated anthocyanins were determined to be 3-O-[6-O-(4-O-(acetyl)-α-rhamnopyranosyl)-β-glucopyranoside]-5-O-(β-glucopyranoside)s of malvidin (pigment 1), peonidin (pigment 2), and pelargonidin (pigment 3) by chemical and spectroscopic methods. HPLC analysis revealed that malvidin 3-O-acetylrutinoside-5-O-glucoside existed as a dominant pigment in the violet-blue flowers. Moreover, the isolated flavone was identified to be apigenin 4′-O-β-glucuronopyranoside (pigment 4).On the visible absorption spectral curves of fresh violet-blue petals and in their crude extracts in pH 5.0 buffer solution, two characteristic absorption maxima at 547 and 577 nm, with a shoulder near 620 nm, were observed. In contrast, the absorption curves of malvidin 3-O-acetylrutinoside-5-O-glucoside and its deacyl anthocyanin exhibited only one maximum at 535 nm in pH 5.0 buffer solution, and its color was violet and soon fell into decay.However, by addition of apigenin 4′-O-glucuronide, the color of malvidin 3-O-acetylrutinoside-5-O-glucoside changed from violet to violet-blue, similar to that of the fresh flower in pH 5.0 buffer solution. The absorption curve of its violet-blue solution exhibited two similar absorption maxima at 547 and 577 nm, with a shoulder near 620 nm. These results suggest that intermolecular copigmentation between malvidin 3-O-acetylrutinoside-5-O-glucoside and apigenin 4′-O-glucuronide may be responsible for the violet-blue flower color of S. ‘Thamires’.
► Three acylated anthocyanins were isolated from the violet-blue flowers of Saintpaulia. ► Anthocyanins were based on 3-rutinoside-5-glucosides of malvidin, peonidin and pelargonidin. ► Violet-blue flower color was demonstrated by the intermolecular copigmentation.