Article ID Journal Published Year Pages File Type
4527142 Aquacultural Engineering 2015 6 Pages PDF
Abstract

•Separation performance for the low-pressure hydrocyclone (LPH) was determined for the feed waste and fecal solids from common carp and Nile tilapia.•Maximum separation efficiencies were shown at the lower inflow rate under 600 mls−1.•The LPH can treat wide size range of solids in recirculation aquaculture systems.

In this work, the practical application of a low-pressure hydrocyclone was examined for feed waste and fecal solid removal for common carp (27 ± 3.1 g, average ± SD) and Nile tilapia (33 ± 3.4 g, average ± SD) in a recirculating aquaculture system. The dimensions of the low-pressure hydrocyclone included an inflow diameter of 30 mm, a cylinder length of 575 mm, an overflow diameter of 60 mm, an underflow diameter of 50 mm, a cylinder diameter of 335 mm and a cone angle of 68°. The different operating conditions tested were inflow rates of 400, 600, 800 and 1000 ml s−1, and underflow rates of 25%, 25%, 20% and 10% of the inflow rates, respectively. Feed waste totals of 4.1 to 4.8% and 3.6 to 4.0% of the feed intake were produced by the common carp and Nile tilapia, respectively. The maximum separation efficiency (Et) for the feed waste from the common carp was 71% at an inflow rate of 600 ml s−1 with an underflow rate of 25% of the inflow rate. The maximum separation efficiency for the feed waste from the tilapia was 59% at an inflow rate of 400 ml s−1 with an underflow rate of 25% of the inflow rate. The fecal solid production estimated from the digestibility was 37.9% and 35.7% of the feed intake for the common carp and Nile tilapia, respectively. The maximum separation efficiency for the feces from the common carp was 60% for an inflow rate of 600 ml s−1 and an underflow rate of 25% of the inflow rate. The maximum separation efficiency for the tilapia feces was 63% at an inflow of 400 ml s−1 with an underflow rate of 25% of the inflow rate. The low-pressure hydrocyclone can be adopted for prefiltration and/or post-filtration for the removal of various sized solids. Furthermore, the solids separated from the underflow can be easily removed for further processing.

Related Topics
Life Sciences Agricultural and Biological Sciences Aquatic Science
Authors
,