Article ID Journal Published Year Pages File Type
4527395 Aquacultural Engineering 2009 10 Pages PDF
Abstract
Fish oxygen requirement is a fundamental variable of aquaculture system design and management, as it is the basis for determining water flow rates for sustaining stock. A study on oxygen consumption of California halibut (Paralichthys californicus) between 3.2 and 165.6 g was conducted in small raceways (2.41 m long, 0.28 m wide, and 0.22 m high; operational water depth between 0.05 and 0.10 m with a quiescent zone 19 cm long in the effluent section) working as open respirometers in a recirculating system under farm-like conditions. The fish were fed commercial dry pelleted feeds at a ratio of ∼0.70-3.00% of body weight (BW) and stocked at densities between 94% and 316% percent coverage area (PCA). Oxygen consumption rates were determined by mass balance calculations. The mean and maximum oxygen consumption rates (g O2/kg fish/day) for juvenile California halibut under the conditions tested can be expressed by Mday = 15.077W−0.2452 and Mday = 17.266W−0.2033, respectively, where W is fish weight in grams. The determination of oxygen consumption by California halibut in farm-like conditions provides valuable information on the oxygen requirement of these fish in an aquacultural setting. This information can be used for designing and sizing a rearing facility for the intensive culture of California halibut.
Related Topics
Life Sciences Agricultural and Biological Sciences Aquatic Science
Authors
, , ,