Article ID Journal Published Year Pages File Type
4529347 Aquatic Toxicology 2013 10 Pages PDF
Abstract

•B[a]P disturbed progesterone, 17β-estradiol and testosterone production in scallop.•B[a]P inhibited 3β-HSD, CYP17 and 17β-HSD expression after a 10-day exposure.•B[a]P of lower dose elevated AHR-CYP1A expression but high dose B[a]P inhibited them.•ER and vitellogenin transcription was consistent with AHR after B[a]P exposure.•B[a]P exposure induced relatively developmental delay and impairment of ovary.

The purpose of this study was to investigate the endocrine disrupting effects induced by benzo[a]pyrene (B[a]P) and explore the underlying mechanisms in mollusks. In this study, sexually mature female Chlamys farreri were exposed to benzo[a]pyrene for 10 days at four different concentrations as 0, 0.025, 0.5 and 10 μg/L. Sex steroids were identified and quantified by electrochemiluminescence immunoassay (ECLIA) method and results showed that exposure to B[a]P exerts great suppression on 17β-estradiol, testosterone production and disrupts progesterone levels in ovary. Transcription of genes were detected and measured by real-time RT-PCR. It showed that at day 10 B[a]P inhibited 3β-HSD, CYP17 and 17β-HSD mRNA expression in a dose-dependent manner, which suggests that they could be potential targets of B[a]P that disrupt steroidogenic machinery. Moreover, 0.025 μg/L B[a]P activated transcription of aryl hydrocarbon receptor (AHR), AHR nuclear translocator (ARNT), CYP1A1 and estrogen receptor (ER), while 10 μg/L B[a]P suppressed all of them. The consistency of their responses to B[a]P exposure implies that AHR action may be involved in invertebrate CYP regulation and ER transcription despite of unknown mechanisms. Additionally, B[a]P exposure could induce ovarian impairment and developmental delay in C. farreri. Overall, sensitivity of C. farreri to endocrine disruption and toxicity suggests that C. farreri is a suitable species for study of endocrine-disrupting effects in marine invertebrates. This study will form a solid basis for a realistic extrapolation of endocrine disrupting effects across taxonomic groups and phyla.

Related Topics
Life Sciences Agricultural and Biological Sciences Aquatic Science
Authors
, , ,