Article ID Journal Published Year Pages File Type
4529660 Aquatic Toxicology 2012 8 Pages PDF
Abstract

The effects of ultraviolet B (UV-B; 295–320 nm) radiation on certain vital physiological (photosynthesis), biochemical (production of reactive oxygen species – ROS) and behavioral (motility and orientation) characteristics were investigated in the unicellular photoautotroph, Euglena agilis Carter. The photosynthetic performance of E. agilis was recorded after exposure of between 15 and 60 min followed by a period of recovery lasting 6–24 h under dim light (5–10 μmol photons m−2 s−1). The maximum quantum yield of PS II (Fv/Fm) was reduced to 65% and 14% of initial values immediately following 15 and 30 min UV-B exposure, but recovered to 100 and 86% of the initials, respectively. Values of rETRmax in E. agilis exposed to 15 min UV-B were similar to those of the initials, but a 30 min UV exposure resulted in 75% reduction of rETRmax with only a 43% recovery as compared with the initial after 24 h recovery. After a 60 min UV-B exposure, there were no Chl a fluorescence signals, and hence no Fv/Fm or rETRmax. A UV dose-dependent increase in DCFH-DA fluorescence was found in E. agilis cells, reflecting an increase in ROS production.After exposures to UV-B for between 15 and 60 min, the percentages of motile cells in the population decreased to 76, 39 and 15%, respectively. Following 24 h in dim light, the percentage of motile cells increased to between 66% and 95% of the initial value. The velocity of non-irradiated cells was 60 μm s−1, which decreased to 16–35 μm s−1 immediately following exposure for 15–60 min. After periods of time in dim light (6, 12 and 24 h) velocities had recovered to between 44 and 81% of the initial value.In untreated controls, the r-value was 0.23, indicating random movement of E. agilis, but it increased to 0.35 and 0.72 after exposure to UV-B for 30 and 60 min, respectively. There was a tendency towards vertical downward movement of cells proportional to the duration of exposure. The compactness of E. agilis decreased from 2.9 in controls to 1.8–2.3 in cells treated with UV-B although significant recovery followed. UV-B dose-dependent interaction between photosynthetic activity, ROS production and movement is discussed in terms of a UV-protective mechanism in E. agilis.

► We proposed a hypothesis for the UV-B protective/adaptive mechanism in Euglena agilis. After moderate levels of UV-B radiation, ROS plays a signaling role to shut down photosynthetic system for protection against harmful UV radiation. ► E. agilis exposed to excessive UV appears to become animal-like, investing all its stored energy into movement rather than into sustaining its photosynthetic machinery. ► This adaptation allows E. agilis to avoid harmful UV and seek a safe place where the organism may regain its photosynthetic capacity for survival.

Related Topics
Life Sciences Agricultural and Biological Sciences Aquatic Science
Authors
, , , ,