Article ID Journal Published Year Pages File Type
4531046 Aquatic Toxicology 2007 8 Pages PDF
Abstract

A biotic ligand model (BLM) to predict chronic Cu toxicity to Ceriodaphnia dubia was developed and tested. The effect of cationic competition, pH and natural organic matter complexation of Cu was examined to develop the model. There was no effect of cationic competition using increasing Ca and Na concentrations in our exposures. However, we did see a significant regression of decreasing toxicity (measured as the IC25; concentration at which there was a 25% inhibition of reproduction) as Mg concentration increased. However, taking into account the actual variability of the IC25 and since the relative increase in IC25 due to additional Mg was small (1.5-fold) Mg competition was not included in the model. Changes in pH had a significant effect on Cu IC25, which is consistent with proton competition as often suggested for acute BLMs. Finally, natural organic matter (NOM) was added to exposures resulting in significant decreases in toxicity. Therefore, our predictive model for chronic Cu toxicity to C. dubia includes the effect of pH and NOM complexation. The model was validated with Cu IC25 data generated in six natural surface waters collected from across Canada. Using WHAM VI, we calculated Cu speciation in each natural water and using our model, we generated “predicted” IC25 data. We successfully predicted all Cu IC25 within a factor of 3 for the six waters used for validation.

Related Topics
Life Sciences Agricultural and Biological Sciences Aquatic Science
Authors
, ,