Article ID Journal Published Year Pages File Type
4544161 Fisheries Research 2009 8 Pages PDF
Abstract

Murray cod Maccullochella peelii peelii is one of the world’s largest freshwater fish and supports popular fisheries in southeast Australia, but no previous modelling efforts have evaluated the effects of fisheries regulations or attempted to develop sustainable harvest policies. We compiled existing population metrics and constructed an age-structured model to evaluate the effects of minimum length limits (MLLs) and fishing mortality rates on Murray cod fisheries. The model incorporated a Beverton and Holt stock recruit curve, age-specific survivorship and vulnerability schedules, and discard (catch and release) mortality for fish caught and released. Output metrics included yield (kg), spawning potential ratio (SPR), total angler catch, total harvest, and the proportion of angler trips that would be influenced by each regulation based on recent creel survey data. The model suggested that annual exploitation (U) should be held to less than 0.15 under the current MLL of 500 mm total length to achieve an SPR > 0.3, a target usually considered to prevent recruitment overfishing. Exploitation rates at or exceeding 0.3 would cause SPR values to drop below typical management targets unless the MLL was set at or above 700 mm. Regulations that protected Murray cod from overfishing created higher angler catches and higher catch of trophy fish, but at a cost of reducing the proportion of angler trips resulting in a harvested fish. Expressing model output on a per-angler trip basis may help fishery managers explain regulation trade offs to anglers.

Related Topics
Life Sciences Agricultural and Biological Sciences Aquatic Science
Authors
, , , , ,