Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4545891 | Harmful Algae | 2009 | 7 Pages |
Abstract
We investigated the ability of the ichthyotoxic haptophyte Prymnesium parvum to use sewage-originated nutrients applying stable carbon (C) and nitrogen (N) isotope techniques. P. parvum was cultured under N and phosphorus (P) sufficient and deficient conditions in either sewage effluent-based medium or in a nitrate- and phosphate-based control. Cell densities and toxicities were monitored and stable carbon N isotopes signatures (δ13C and δ15N) of P. parvum and the sewage effluent analysed. Nitrogen and P sufficient cultures achieved the highest biomass followed by P and N deficient cultures, regardless of sewage effluent additions. The P deficient cultures with sewage effluent had higher toxicity, estimated as haemolytic activity (9.4 ± 0 Ã 10â5 mg Saponin equiv. cellâ1) compared to the P deficient control and to all N deficient and NP sufficient cultures. Nutrient deficient conditions had no effect on the cell δ15N, but a decreasing effect on δ13C in the inorganic N deficient treatment. Growth in sewage-based media was followed by a substantial increase in the cell δ15N (10.4-16.1â°) compared to the control treatments (2.4-4.9â°), showing that P. parvum is capable of direct use of sewage-originated N, inorganic as well as organic. Uptake of terrestrial derived C in the sewage treatments was confirmed by a decrease in cell δ13C, implying that P. parvum is able to utilize organic nutrients in sewage effluent.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Aquatic Science
Authors
Elin Lindehoff, Edna Granéli, Wilhelm Granéli,