Article ID Journal Published Year Pages File Type
4554928 Environmental and Experimental Botany 2011 11 Pages PDF
Abstract

The impact of climatic change on crop production is a major global concern. One of the climatic factors, ultraviolet-B radiation (UV-B; 280–320 nm), which is increasing as a result of depletion of the global stratospheric ozone layer, can alter crop productivity. As the initial step in development of UV-B tolerant rice cultivars for the southern U.S., in this study we screened popular southern U.S. rice cultivars for variation in tolerance to elevated UV-B radiation with respect to morphological, phenological and physiological parameters. Plants grown in the greenhouse at the Texas AgriLife Research and Extension Center in Beaumont, Texas, U.S. were exposed to 0, 8 or 16 kJ m−2 day−1 UV-B radiation for 90 days. Our results showed differences among southern US rice cultivars in response to UV-B treatments with respect to leaf photosynthetic rate (Pn), leaf phenolic concentration, pollen germination (PG), spikelet fertility (SF), leaf number, leaf area, and yield. For most of the cultivars, plants exposed to enhanced UV-B radiation showed decreased Pn, PG, SF and yield and increased spikelet abortion and leaf phenolic concentration compared to the plants grown in a UV-B-free environment. In this study, cultivar ‘Clearfield XL729’ performed better than the other cultivars under enhanced UV-B radiation.

Research highlights▶ Enhanced UV-B radiation decreases rice yield. ▶ Decreased yields are due to decreased photosynthesis, pollen germination and spikelet fertility. ▶ U.S. rice cultivars differ in their tolerance to enhanced UV-B radiation.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, ,