Article ID Journal Published Year Pages File Type
4555040 Environmental and Experimental Botany 2009 6 Pages PDF
Abstract

Phenotypic plasticity in morphological, anatomical and physiological traits of peanut (Arachis hypogaea L.) leaves was tested at four different concentrations of Cd, Cu and Zn under greenhouse conditions. Among 18 characteristics tested, nine were found to be the most sensitive and demonstrate the greatest phenotypic plasticity. These were: the leaf area (LA), the leaf mass per area (LMA), chlorophyll a concentration (Chl a), chlorophyll b concentration (Chl b), total chlorophyll concentration (Chl t), the effective quantum yield of photosystem II (ΦPS II), stomatal density of upper epidermis (SDU), palisade thickness (PT), and palisade to spongy thickness ratio (P/S). The plasticity of chlorophyll concentration and fluorescence parameters may be maladaptive and reflects metal toxicity to leaves, whereas the anatomical plasticity is adaptive, indicative of a tradeoff between the physiological and anatomic plasticity. The anatomical plasticity resulted in a xerophyte feature of leaves (i.e. small leaflets, thick lamina, upper epidermis, palisade mesophyll, as well as abundant and small stomata), which enhanced the capacity to resist drought caused by heavy metals via a decrease in root growth.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, ,