Article ID Journal Published Year Pages File Type
4555056 Environmental and Experimental Botany 2009 7 Pages PDF
Abstract

Little work has been done on root exudation in soybean under P deficiency. This study examined the effect of P supply on release of protons and carboxylates by roots of soybean (Glycine max Heinong 35), and to correlate the release with excess uptake of cations over anions. Plants were either reliant on N2 fixation or supplied with nitrate and were grown in nutrient solution with 1–50 μM P for 7 weeks. Release of protons and carboxylates from roots, and concentrations of Ca, Mg, K, Na, P, S, Cl and N in plants were measured weekly from week 4. Unlike in many other species, P deficiency decreased proton release per unit root biomass in N2-fixing plants and increased release of hydroxyl ions in nitrate-fed soybean. While P deficiency generally decreased uptake of K, Ca, Mg, S, Cl and P, it increased nitrate uptake per unit root biomass. Irrespective of P supply, amounts of protons released correlated well with excess uptake of cations over anions by the roots. Phosphorus deficiency increased release of carboxylates but the amounts released were small. The results suggest that soybean displays strategies of P acquisition through decreasing proton release which favors P mobilization in acid soils, and increasing root-to-shoot ratio and specific root length.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , ,