Article ID Journal Published Year Pages File Type
4555224 Environmental and Experimental Botany 2009 10 Pages PDF
Abstract

Plants of Chilopsis linearis were grown with 0, 50, 100, and 200 μM Hg [as Hg(CH3COO)2] and 0 and 50 μM Au (as KAuCl4) in hydroponics. The results showed that seedling grown with 50 μM Au + 50 μM Hg and 50 μM Au + 100 μM Hg had roots 25 and 55% shorter than control roots, respectively. The element uptake determination using ICP/OES demonstrated that Hg at 50 and 100 μM (with and without Au) significantly increased (p < 0.05) the S concentration in leaves. On the other hand, the concentration of Fe significantly increased in roots of plants treated with Au–Hg. In addition, the stems of plants treated with Hg at 100 μM, with and without Au, had 239 and 876 mg Hg/kg dry biomass (d wt), respectively. Also, at 50 μM Hg, with and without Au, stems accumulated 375 and 475 mg Hg/kg d wt. The Hg concentration in leaves (287 mg Hg/kg d wt) was higher (p < 0.05) for the treatment containing 50 μM Au + 100 μM Hg. Without Au, the Hg concentration in leaves decreased to 75 mg Hg/kg d wt. Toxicity symptoms induced by Hg in cortex cells and the vascular system were lower in plants exposed to 50 μM Au + 50 μM Hg compared to plants exposed to 50 μM Hg only. Further, the SEM micrographs revealed deposition of Au–Hg particles inside the root. Although the concentrations of Hg used in this study showed different degree of toxicity, the plants displayed good agronomic value.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , , , , ,