Article ID Journal Published Year Pages File Type
4555300 Environmental and Experimental Botany 2008 7 Pages PDF
Abstract

Beech seed physiology, including the effect of stress proteins like late embryogenesis abundant (LEA) and small heat shock proteins (sHSP) on viability during storage, is not fully understood. Four lots of beech (Fagus sylvatica L.) seeds have been stored for 1, 4, 6 and 8 years at −10 °C and 8–9% moisture content (MC). Under these conditions, the germination capacity ranges from 81.5% to 100% in the youngest seeds. However, the seeds decrease in vigour with prolonged time of storage. Dehydrins and dehydrin-like proteins were identified both in cotyledons and embryonic axes of the dry stored seeds. In general, decreased contents of LEA proteins as well as reduced content of total soluble protein were detected during prolonged storage. The contents of soluble proteins in embryonic axes and nearly all detected dehydrins and dehydrin-like proteins were correlated with germination capacity. Moreover a sHSP with molecular mass of approximately 22 kDa was identified. The largest content of this protein was observed in the oldest seeds, especially in embryonic axes. The proteins identified may play a protective role during water deficit and storage.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, ,