Article ID Journal Published Year Pages File Type
4555665 Environmental and Experimental Botany 2006 8 Pages PDF
Abstract

The effects of cadmium (Cd) administration on primary root growth, mitotic activity of apical meristems, mitotic aberrations and percentage of nucleus ploidy classes of differentiated roots were examined in Pisum sativum L. cv. Frisson. Cadmium caused a reduction of root length related to concentration, with an almost complete block of growth in plants treated with 250 μM Cd, from 24 h of treatment. Root lengthening is generally related to apical meristem activity, however, in the examined pea plants, mitotic activity was suppressed by 2.5 and 25 μM Cd treatment, while the highest Cd concentration, 250 μM, caused the occurrence of mitotic figures consisting almost exclusively of prophases. The lack of relation between root lengthening and mitotic activity was explained by the meristematic activity in the first period of treatment and by a different cell elongation. Lower (0.25, 0.5 and 1 μM), non-blocking Cd concentrations induced a number of mitotic aberrations, mainly consisting of sticky metaphases and anaphase bridges, whose frequency increased with Cd concentration. Besides, Cd induced variations of the percentages of nucleus populations in the differentiated roots, increasing the percentage of 4C nuclei and decreasing that of 2C. The mechanisms involved in the nuclear response to Cd, and the possible relations between Cd alteration of meristem cell activity and nuclear ploidy of differentiated cells are discussed.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , , , , ,