Article ID Journal Published Year Pages File Type
4555715 Environmental and Experimental Botany 2007 11 Pages PDF
Abstract

Theoretical plant growth models postulate that the relative rates of shoot and root growth are largely modulated by signals related to carbon and nitrogen status of the plant. To test this experimentally, 6-week-old vegetative cuttings of grapevine (Vitis vinifera L. cv Merlot) were grown aeroponically in different controlled conditions of irradiance (13.8, 8.4 and 5.3 mol PAR m−2 day−1) and/or nitrogen nutrition (0.15, 1.20 and 7.11 mM N). Total non-structural carbohydrates (TNC) and amino acids (FAA) in leaves and roots were analysed 0, 6 and 28 days after treatment initiation. Both whole-plant biomass accumulation as well as C and N contents were highly responsive to light and N availability. At day 28, plant dry weight was significantly reduced in shaded vines (−35% of that of the control plants) and stimulated under the high irradiance environment (+30%). Deprivation of N enhanced root growth (+51%) at the expense of above-ground growth, whereas leaf dry weight was significantly greater in the high-N treatment than in the control. Vines grown under low-N and high irradiance conditions had the highest root-to-shoot ratios and those grown under low light and high N the lowest. Finally, redistribution of biomass among vegetative vine parts was significantly related to different indicators of the vine C:N status measured either at the whole-plant (N concentration) or at the organ level (TNC:FAA ratio), suggesting that root-to-shoot biomass partitioning was controlled by some aspect of plant C:N balance. Such relationships will be useful to improve allocation rules in a process-based growth model of grapevine.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , , , ,