Article ID Journal Published Year Pages File Type
456374 Digital Investigation 2014 10 Pages PDF
Abstract

A steganalytic feature selection method based on the Fisher criterion used in pattern recognition is proposed in this paper in order to reduce effectively the high dimensionality of the statistical features used in state-of-the-art steganalysis. First, the separability of each single-dimension feature in the feature space is evaluated using the Fisher criterion, and these features are reordered in descending order of separability. Then, starting from the first dimension of the reordered features, as the dimension increases, the separability of each feature component is analyzed using the Fisher criterion combined with the Euclidean distance. Finally, the feature components with the best separability are selected as the final steganalytic features. Experimental results based on the selection of SPAM (Subtractive Pixel Adjacency Matrix) features in spatial-domain steganalysis and CC-PEV (Cartesian Calibrated feature extracted by PEVnĂ˝) features in DCT-domain steganalysis show that the proposed method can not only reduce the dimensionality of the features efficiently while maintaining the accuracy of the steganalysis, but also greatly improve the detection efficiency.

Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
, , ,