Article ID Journal Published Year Pages File Type
4570690 Molecular Plant 2008 8 Pages PDF
Abstract

ABSTRACTPerception of the phytohormone ethylene is accomplished by a small family of integral membrane receptors. In Arabidopsis five ethylene receptor proteins are known, including ethylene resistant 1 (ETR1). The hydrophobic amino-terminal domain of these receptors contains the ethylene-binding site while the carboxyl-terminal part consists of a histidine kinase domain and a response regulator domain, which are well known elements found in bacterial two-component signaling. The soluble membrane-extrinsic carboxyl-terminal part of the receptor, which is likely to play an important role in signal transduction, showed intrinsic kinase activity when expressed and purified on its own. However, a correlation between signal input and autokinase activity was not established in these studies, as receptors were missing the transmembrane amino-terminal sensor domain. Thus, it is still unclear whether autophosphorylation occurs in response to perception of the ethylene signal. Here, we report on autophosphorylation studies of purified full-length ETR1. Autokinase activity of the purified receptor is controlled by ethylene or by ethylene agonists like the π-acceptor compound cyanide. In fact, both signal molecules were able to completely turn off the intrinsic kinase activity. Furthermore, the observed inhibition of autophosphorylation in ETR1 by both molecules could be prevented when the ethylene antagonist 1-methyl-cyclopropene (MCP) was applied.

Related Topics
Life Sciences Agricultural and Biological Sciences Plant Science
Authors
, ,