Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4582146 | Pedosphere | 2007 | 9 Pages |
Knowledge of the soil water characteristic curve is fundamental for understanding unsaturated soils. The objective of this work was to find scanning hysteresis loops of two fine textured soils at water potentials below wilting point. This was done by equilibration over NaCl solutions with water potentials of ā6.6 to ā18.8 MPa at 25 ?C. When cycled repeatedly through a series of potentials in the range noted previously both soils exhibited a hysteresis effect. The experimental differences in water content between the drying and wetting soils at the same water potential were much too large to be accounted for by failure to allow sufficient time to attain equilibrium as predicted by the exponential decay model. The wetting versus drying differences were relatively small, however, at only 4 mg gā1 or less in absolute terms and about 3% of the mean of wetting and drying, in relative terms. Hysteresis should be a consideration when modeling biological and physical soil processes at water contents below the wilting point, where small differences in water content result in large potential energy changes.