Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4582769 | Finite Fields and Their Applications | 2015 | 7 Pages |
Abstract
Let l be a finite field of cardinality q and let n be in Z≥1Z≥1. Let f1,…,fn∈l[x1,…,xn]f1,…,fn∈l[x1,…,xn] not all constant and consider the evaluation map f=(f1,…,fn):ln→lnf=(f1,…,fn):ln→ln. Set deg(f)=maxideg(fi)deg(f)=maxideg(fi). Assume that ln∖f(ln)ln∖f(ln) is not empty. We will prove|ln∖f(ln)|≥n(q−1)deg(f). This improves previous known bounds.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory
Authors
Michiel Kosters,