Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4593146 | Journal of Number Theory | 2017 | 14 Pages |
Abstract
An asymptotic approximation of Wallis' sequence m↦Wm:=∏k=1m4k24k2−1 is presented asWm=mπ2m+1exp(2σq(m))⋅exp(rq(m)), whereσq(x):=∑i=1⌊q/2⌋(1−4−i)B2ii(2i−1)⋅x2i−1(Bk are the Bernoulli coefficients), and where|rq(m)|
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory
Authors
Vito Lampret,