Article ID Journal Published Year Pages File Type
4593636 Journal of Number Theory 2015 12 Pages PDF
Abstract

Using the method of explicit auxiliary functions, we first improve the known lower bounds of the absolute Mahler measure of totally positive algebraic integers. In 2008, I. Pritsker defined a natural areal analog of the Mahler measure that we call the Pritsker measure. We study the spectrum of the absolute Pritsker measure for totally positive algebraic integers and find the four smallest points. Finally, we give inequalities involving the Mahler measure and the Pritsker measure of totally positive algebraic integers. The polynomials involved in the auxiliary functions are found by our recursive algorithm.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
,