Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4596201 | Journal of Pure and Applied Algebra | 2014 | 27 Pages |
Abstract
Given a sequence x of elements of a commutative equidimensional noetherian ring R, cycles zi(x,R) (iâN) in the cycle group of polynomial rings over R are defined by generic residual intersections. The study of these cycles gives new insight into the theory for excess intersections in projective space developed by Stückrad and Vogel, in particular concerning the contribution to the intersection cycle of embedded components not defined over the base field.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory
Authors
Rüdiger Achilles, Jürgen Stückrad,