Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
463599 | Optical Switching and Networking | 2013 | 11 Pages |
Due to the increasing heterogeneity and the growing volume of traffic, telecom backbone networks are going through significant innovations. Wavelength-division multiplexed (WDM) optical networks can now cost-effectively support the growing heterogeneity of traffic demands by having mixed line rates (MLR) over different wavelength channels.The coexistence of wavelength channels with different line rates, e.g., 10/40/100 Gbps, in the same fiber brings up various design issues: in this study, we focus on (1) choice of channel spacing; (2) choice of launch power; and (3) regenerator placement. Channel spacing affects the signal quality in terms of bit-error rate (BER), and hence affects the maximum reach of lightpaths, which is a function of line rates. Various approaches to set an opportunistic width of the channel spacing can be considered, viz., (i) uniform fixed channel spacing specified by the ITU-T grid (typically 50 GHz); (ii) different channel spacing for different line rates; or (iii) optimal value of channel spacing for all line rates that leads to minimum cost.The launch optical power of a signal is another important parameter that affects the network cost. Adjacent channels on different line rates, especially 10 Gbps and 100 Gbps, may exhibit serious degradation of signal quality and optical reach for both the channels due to cross-phase modulation (XPM) between them. Launch power plays a role in such a scenario as it governs the BER by affecting both the signal power and the noise power due to XPM. Moreover, intelligent choice of launch powers on different line rates can significantly reduce the number of regenerators required in the network. The tradeoff between placement of regenerators and choice of launch power is an important problem to address for MLR network design.In this work, we investigate the effects of channel spacing and launch optical power by evaluating the cost of a MLR network for different values of these parameters. We also study the interplay between regenerator placement and launch power. Our results show that (a) it is possible to identify optimal values of channel spacing for a minimum-cost MLR network design, and (b) controlling the power of 10 Gbps and 100 Gbps channels shows maximum sensitivity to the network cost.