Article ID Journal Published Year Pages File Type
464210 Physical Communication 2015 7 Pages PDF
Abstract

Wireless channels suffer from short term fading and shadowing simultaneously. While simple models of short term fading are based on the Nakagami-m distribution, short term fading can also be described as a cascading process allowing the modeling of wireless channels having worse fading than what exists in Nakagami-m channels. Shadowing, on the other hand, has been traditionally modeled as a lognormal process, making the analysis of shadowed fading channels cumbersome. Taking note of the fact that the lognormal density arises out of a multiplicative process, it was shown that shadowing can also be modeled as a cascading process. Utilizing such a vision of shadowing, this work provides an overview of a unified cascaded approach to model wireless channels when short term fading and shadowing are simultaneously present. The degradation in such shadowed fading channels is estimated in terms of error rates and outage probabilities. Results are compared to those of the exact model based on lognormal density as well as random number simulation. Analysis demonstrates that error rates and outage probabilities obtained using the exact model (lognormal model for shadowing) agree very well with those obtained through the composite cascaded model as well as random number simulations.

Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
,