Article ID Journal Published Year Pages File Type
466334 Physical Communication 2013 7 Pages PDF
Abstract

In this paper, two novel joint semi-blind channel estimation and data detection techniques are proposed and investigated for Alamouti coded single-carrier (SC) multiple-input multiple-output (MIMO) communication system using Rayleigh flat fading channel model. In the first novel semi-blind technique, blind channel estimation can be performed by using singular value decomposition (SVD) of received output autocorrelation matrix and training based channel estimation for orthogonal training symbols can be performed by using orthogonal pilot maximum likelihood (OPML) algorithm. Further using, that semi-blind channel estimate and received output, data detection is performed by using Maximum likelihood (ML) detection. Finally we derived new training symbols from error covariance matrix of estimated data and known orthogonal training symbols, which further applied to OPML algorithm for final channel estimate. In the second novel semi-blind technique, blind channel estimation can be performed by using matrix triangularization based on householder QR decomposition (H-QRD) of received output autocorrelation matrix instead of SVD decomposition. Other steps are same as the first novel technique to calculate data detection and final channel estimation. Simulation results are presented under 2-PSK, 4-PSK, 8-PSK and 16-QAM data modulation schemes using 2 transmitters and different combinations of receiver antennas to investigate the performances of novel techniques compare to conventional whitening rotation (WR) and rotation optimization maximum likelihood (ROML) based semi-blind channel estimation techniques. Result demonstrates that novel techniques outperform others by achieving near optimal performance.

Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
, , , ,