Article ID Journal Published Year Pages File Type
471495 Computers & Mathematics with Applications 2016 18 Pages PDF
Abstract

In this paper Galerkin finite element approximation of optimal control problems governed by time fractional diffusion equations is investigated. Piecewise linear polynomials are used to approximate the state and adjoint state, while the control is discretized by variational discretization method. A priori error estimates for the semi-discrete approximations of the state, adjoint state and control are derived. Furthermore, we also discuss the fully discrete scheme for the control problems. A finite difference method developed in Lin and Xu (2007) is used to discretize the time fractional derivative. Fully discrete first order optimality condition is developed based on ‘first discretize, then optimize’ approach. The stability and truncation error of the fully discrete scheme are analyzed. Numerical example is given to illustrate the theoretical findings.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, ,